PL EN
ARTYKUŁ ORYGINALNY
MARSZRUTYZACJA POJAZDÓW DYSTRYBUCYJNYCH: METODA OPTYMALIZACJI I OCENA WPŁYWU ZASTOSOWANEGO SPOSOBU WYZNACZANIA ŚCIEŻEK W SIECI TRANSPORTOWEJ
 
Więcej
Ukryj
1
Politechnika Warszawska, Wydział Transportu
 
 
Data publikacji: 30-09-2018
 
 
SLW 2018;48(1):300-312
 
SŁOWA KLUCZOWE
STRESZCZENIE
Celem artykułu jest prezentacja metody wyznaczania tras pojazdów dystrybucyjnych i ocena wpływu zastosowanego sposobu wyznaczania ścieżek między węzłami w sieci transportowej. Realizacja celu wymagała sformułowania modelu matematycznego odwzorowującego system dystrybucji ładunków i zadania optymalizacyjnego. Przedstawiono metodę optymalizacyjną opartą o algorytmy genetyczne i modyfikację algorytmu A-star do wyznaczania ścieżek. W artykule porównano wyznaczanie marszrut dla pojazdów dystrybucyjnych z punktu widzenia zastosowanego podejścia do wyznaczania ścieżek.
 
REFERENCJE (23)
1.
Baldacci, R., Hadjiconstantinou, E., & Mingozzi, A. (2004). An exact algorithm for the capacitated vehicle routing problem based on a two-commodity network flow formulation. Operations research, 52(5), 723-738.
 
2.
Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., & Juan, A. A. (2014). Rich Vehicle Routing Problem: Survey. ACM Computing Surveys (CSUR), 47(2), 32.
 
3.
Chabrier, A. (2006). Vehicle routing problem with elementary shortest path based column generation. Computers & Operations Research, 33(10), 2972-2990.
 
4.
Clarke, G. U., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations research, 12(4), 568-581.
 
5.
Corominas, A., García-Villoria, A., & Pastor, R. (2014). Improving parametric Clarke and Wright algorithms by means of iterative empirically adjusted greedy heuristics. SORT-Statistics and Operations Research Transactions, 38(1), 3-12.
 
6.
Fridell, E., Belhaj, M., Wolf, C., & Jerksjö, M. (2011). Calculation of external costs for freight transport. Transportation planning and technology, 34(5), 413-432.
 
7.
Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M. P., Reis, M., Uchoa, E., & Werneck, R. F. (2006). Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical programming, 106(3), 491-511.
 
8.
Glover, F. (1995). Tabu search fundamentals and uses. Boulder: Graduate School of Business, University of Colorado.
 
9.
Goldberg, A. V., & Harrelson, C. (2005). Computing the shortest path: A search meets graph theory. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (pp. 156-165). Society for Industrial and Applied Mathematics.
 
10.
Gromicho, J., van Hoorn, J. J., Kok, A. L., & Schutten, J. M. J. (2012). Restricted dynamic programming: a flexible framework for solving realistic VRPs. Computers & Operations Research, 39(5), 902-909.
 
11.
Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints. Column generation, 6730, 33-65.
 
12.
Jacyna, M., & Merkisz, J. (2014). Proecological approach to modelling traffic organization in national transport system. Archives of Transport, 30(2), 31-41.
 
13.
Jacyna-Gołda, I, Izdebski, M., Szczepański, E., Gołda, P. (2018). The assessment of supply chain effectiveness. Archives of Transport, 45(1), 43-52.
 
14.
Jacyna-Gołda, I., Gołębiowski, P., Izdebski, M., Kłodawski, M., Jachimowski, R., & Szczepański, E. (2017). The evaluation of the sustainable transport system development with the scenario analyses procedure. Journal of Vibroengineering, 19(7), 5627-5638.
 
15.
Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408-416.
 
16.
Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., & Thrun, S. (2005). Anytime Dynamic A: An Anytime, Replanning Algorithm. In ICAPS (pp. 262-271).
 
17.
Michalewicz, Z. (2003). Algorytmy genetyczne+ struktury danych=programy ewolucyjne. Warszawa: Wydawnictwa Naukowo-Techniczne.
 
18.
Pichpibul, T., & Kawtummachai, R. (2013). A heuristic approach based on clarke-wright algorithm for open vehicle routing problem. The Scientific World Journal, 2013.
 
19.
Prins, C., & Bouchenoua, S. (2005). A memetic algorithm solving the VRP, the CARP and general routing problems with nodes, edges and arcs. In Recent advances in memetic algorithms (pp. 65-85). New York: Springer Berlin Heidelberg.
 
20.
Sysło, M. M., Deo, N., & Kowalik, J. S. (1999). Algorytmy optymalizacji dyskretnej: z programami w języku Pascal. Warszawa:Wydawnictwo Naukowe PWN.
 
21.
Toth, P., & Vigo, D. (2001). Branch-and-bound algorithms for the capacitated VRP. In The vehicle routing problem (pp. 29-51). Society for Industrial and Applied Mathematics.
 
22.
Toth, P., & Vigo, D. (2002). Models, relaxations and exact approaches for the capacitated vehicle routing problem. Discrete Applied Mathematics, 123(1), 487-512.
 
23.
Wasiak, M., Jacyna, M., Lewczuk, K., & Szczepański, E. (2017). The method for evaluation of efficiency of the concept of centrally managed distribution in cities. Transport, 32(4), 348–357.
 
eISSN:2719-7689
ISSN:1508-5430
Journals System - logo
Scroll to top