Order-picking process is the basic cost driver and warehouse process quality determinant in the supply chain. Effective picking requires a suitable technological system, tailored to the logistic task to be done, and a strategy for picking area replenishment, which will be both cost-effective and ensure timely completion of picking tasks. The paper presents the problem of replenishing picking areas and discusses the basic elements of the replenishment strategy with reference to the current state of knowledge.
REFERENCES(23)
1.
BAKER, P., & CANESSA, M. (2009). Warehouse design: A structured approach. European journal of operational research, 193(2), 425-436.
BUKCHIN, Y., KHMELNITSKY, E., & YAKUEL, P. (2012). Optimizing a dynamic order-picking process. European Journal of Operational Research, 219(2), 335-346.
DE KOSTER, R., LE-DUC, T., & ROODBERGEN, K. J. (2007). Design and control of warehouse order picking: A literature review. European journal of operational research, 182(2), 481-501. doi: 10.1016/j.ejor.2006.07.009.
HOMPEL, M., & SCHMIDT, T. (2006). Warehouse management: automation and organisation of warehouse and order picking systems. Springer Science & Business Media.
HOUSE, R. G., & KARRENBAUER, J. J. (1978). Logistics system modelling. International Journal of Physical Distribution & Materials Management, 8(4), 189-199.
HSIEH, L. F., & TSAI, L. (2006). The optimum design of a warehouse system on order picking efficiency. The International Journal of Advanced Manufacturing Technology, 28(5-6), 626-637.
JACYNA, M., LEWCZUK, K., & KŁODAWSKI, M. (2015). Technical and organizational conditions of designing warehouses with different functional structures. Journal of KONES, 22(3), 49-58. DOI: 10.5604/12314005.1165971.
JACYNA-GOŁDA, I., & LEWCZUK, K. (2017). The method of estimating dependability of supply chain elements on the base of technical and organizational redundancy of process. Eksploatacja i Niezawodność, 19(3), 382-392.
KLODAWSKI, M., JACHIMOWSKI, R., JACYNA-GOLDA, I., & IZDEBSKI, M. (2018). Simulation analysis of order picking efficiency with congestion situations. International Journal of Simulation Modelling, 17(3), 431-443.
KŁODAWSKI, M., LEWCZUK, K., JACYNA-GOŁDA, I., & ŻAK, J. (2017). Decision making strategies for warehouse operations. Archives of Transport, 41(1), 43-53. doi: 10.5604/01.3001.0009.7384.
LARCO, J. A., DE KOSTER, R., ROODBERGEN, K. J., & DUL, J. (2017). Managing warehouse efficiency and worker discomfort through enhanced storage assignment decisions. International Journal of Production Research, 55(21), 6407-6422, doi: 10.1080/00207543.2016.1165880.
LEWCZUK, K. (2012). Selected aspects of organizing order-picking process with dynamic assignment of material to locations. In Carpathian Logistics Congress, CLC (pp. 565-571).
LEWCZUK, K., (2013). Badanie procesu komisjonowania z dynamicznym przydziałem jednostek do lokacji. Prace Naukowe Politechniki Warszawskiej Transport, 89, 65-83.
LEWCZUK, K. (2016). Dependability issues in designing warehouse facilities and their functional areas/Zagadnienia niezawodności w projektowaniu magazynów i ich obszarów funkcjonalnych magazynów. Journal of KONBiN, 38(1), 201-228,. doi: 10.1515/jok-2016-0024.
LI, J., MOGHADDAM, M., & NOF, S. Y. (2016). Dynamic storage assignment with product affinity and ABC classification—a case study. The International Journal of Advanced Manufacturing Technology, 84(9-12), 2179-2194, doi: 10.1007/s00170-015-7806-7.
PETERSEN, C. G., SIU, C., & HEISER, D. R. (2005). Improving order picking performance utilizing slotting and golden zone storage. International Journal of Operations & Production Management, 25(10), 997–1012.
VAN DEN BERG, J. P., SHARP, G. P., GADEMANN, A. N., & POCHET, Y. (1998). Forward-reserve allocation in a warehouse with unit-load replenishments. European journal of operational research, 111(1), 98-113.
VAN GILS, T., RAMAEKERS, K., CARIS, A., & DE KOSTER, R. B. (2018). Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. European Journal of Operational Research, 267(1), 1-15. doi: 10.1016/j.ejor.2017.09.002.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.